
Software Engineering

Computer Science Tripos 1B
Michaelmas 2011

Richard Clayton

Managing complexity

• Software engineering is about managing complexity at a
number of levels

• At the micro level, bugs arise in protocols, algorithms etc.
because they’re hard to understand

• As programs get bigger, interactions between the components
grow at O(n2) or even O(2n)

• …

• With complex socio-technical systems, we can’t predict
reactions to new functionality

• Most failures of really large systems are due to wrong,
changing, or contested requirements

Project failure, c. 1500 BC

Complexity, 1870 – Bank of England

Complexity, 1876 – Dun, Barlow & Co

Complexity, 1906 – Sears, Roebuck

• Continental-scale mail order meant specialization

• Big departments for single book-keeping functions

• Beginnings of automation with dictation to recording cylinders
and a typing pool to create outgoing letters

Complexity, 1940 – First National Bank
of Chicago

1960s – The ‘software crisis’

• In the 1960s, large powerful mainframes made even more
complex systems possible

• People started asking why project overruns and failures were so
much more common than in mechanical engineering,
shipbuilding, bridge building etc.

• Software Engineering as a field dates back to two NATO Science
Committee run conferences in 1968 and 1969

• The hope was that we could get things under control by using
disciplines such as project planning, documentation and testing

How is software different?

• Many things that make writing software fun also make it
complex and error-prone:

• the joy of solving puzzles and building things from interlocking
moving parts

• the stimulation of a non-repeating task with continuous learning
• pleasure of working with a tractable medium, ‘pure thought stuff’
• complete flexibility – you can base the output on the inputs in any

way you can imagine
• satisfaction of making stuff that’s useful to others

Software complexity

• Large systems become qualitatively more complex, unlike big
ships or long bridges

• The tractability of software leads customers to demand
‘flexibility’ and frequent changes

• Thus systems also become more complex to use over time as
‘features’ accumulate

• The structure can be hard to visualise or model

• The hard slog of debugging and testing piles up at the end,
when the excitement’s past, the budget’s spent and the
deadline’s looming

development operations legacy

The software life cycle

• Software economics can get complex
• consumers buy on sticker price, businesses on total cost of

ownership
• vendors use lock-in tactics, with complex outsourcing issues

• First let’s consider the simple (1950s) case of a company that
develops and maintains software entirely for its own use:

co$t

time

10% of cost is in development
90% goes in continuing maintenance

What does code cost?

• First IBM measures (60s), in lines of code per man-year
• 1,500 LOC/my (operating system)
• 5,000 LOC/my (compiler)
• 10,000 LOC/my (app)

• AT&T measures
• 600 LOC/my (compiler)
• 2,200 LOC/my (switch)

• So only a handful of lines of code per day
• this of course includes all specification, debugging, testing

• Alternatives
• Halstead (entropy of operators/operands)
• McCabe (graph entropy of control structures)
• Function point analysis

First-generation lessons learned

• There are huge variations in productivity between individuals
• my own experience (1970s-1990s), at least a factor of 10 between

‘the best’ and those you are not prepare to dismiss as ‘useless’

• The main systematic gains have come from using an
appropriate high-level language

• high level languages take away much of the accidental complexity,
so the programmer can focus on the intrinsic complexity

• It’s also worth putting extra effort into getting the specification
right, as it more than pays for itself by reducing the time spent
on coding and testing

Development costs

• Barry Boehm, 1975:

• So the toolsmith needs to focus on more than just code!

Spec Code Test
C3I 46% 20% 34%

Space 34% 20% 46%
Scientific 44% 26% 30%
Business 44% 28% 28%

The ‘Mythical Man Month’

• Fred Brooks (manager of the IBM OS360 programme) debunked
interchangeability:

• Imagine a project which is going to take 3 men 4 months, with
one month of design and 3 months of code and test

• But if the design work takes an extra month, we only have 2
months left to do 9 man-months of work.

• But if training someone takes a month, we must add 6 men

• But the work 3 men could do in 3 months just can’t be done by
9 men in 1 month! Interaction costs maybe O(n2)

• Hence Brooks’ law:
• adding manpower to a late project makes it later!

Software engineering economics

• Boehm, 1981 (empirical studies after Brooks) developed the
COCOMO model which has seen wide commercial use

• COCOMO = Constructive COst MOdel

• Boehm’s cost-optimum schedule time to first shipment
• T = 2.5 * (man-months)1/3

• exponent of ‘1/3’ varies slightly with the experience of team and
type of project. Total man months clearly varies rather more!

• with more time for the project, cost rises slowly
• with less time available, it rises sharply

• Hardly any projects succeed in less than 3/4 T

• Other studies show that if people are to be added, you should
do it early rather than late

• Some projects fail despite huge resources!

The software project ‘tar pit’

• You can pull any one of your legs out of the tar …

• Individual software problems all soluble but …

Structured design

• The only practical way to build large complex programs is to
chop them up into modules

• Sometimes task division seems straightforward (bank = tellers,
ATMs, dealers, …)

• Sometimes it isn’t

• Sometimes it merely appears to be straightforward …

• Quite a number of methodologies have been developed (SSDM,
Jackson, Yourdon, …)

The Waterfall Model I

Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

The Waterfall Model II

• Requirements are written in the user’s language

• The specification is written in system language

• There can be many more steps than this – system spec,
functional spec, programming spec …

• The philosophy is to progressively refine the description of what
the user wants

• Warning – when Winton Royce published this in 1970 he
cautioned against naïve use

• But it become a US DoD standard …

The Waterfall Model III

Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

validate

validate

verify

verify

The Waterfall Model IV

• People often suggest adding an overall feedback loop from
operations back to requirements

• However the essence of the waterfall model is that this isn’t
done

• It would erode much of the value that organisations get from
top-down development

• Very often the waterfall model is used only for specific
development phases, e.g. adding a new feature

• But sometimes people use it for whole systems

Advantages of the Waterfall Model

• Compels early clarification of system goals and is conducive to
good design practice

• Enables the developer to charge for changes to the
requirements

• It works well with many management tools, and technical tools

• Where it’s viable it’s usually the best approach

• The really critical factor is whether you can define the
requirements in detail in advance. Sometimes you can (Y2K
bugfix); sometimes you can’t (HCI)

Objections to the Waterfall Model

• Iteration can be critical in the development process:
• requirements not yet understood by developers
• or not yet understood by the customer
• the technology is changing
• the environment (legal, competitive) is changing

• The attainable quality improvement from the focus on getting
design right from the beginning may be unimportant over the
system lifecycle

• Specific objections from safety-critical, package software
developers

Iterative Development

Develop
outline spec

Build system Use system

Deliver system

OK?

Yes

No

Problem: this algorithm
might not terminate!

Spiral Model I

Spiral Model II

• The essence of the spiral is that you decide in advance on a
fixed number of iterations

• e.g. engineering prototype, pre-production prototype, then product
• cf Brookes “Plan to throw one away, you will anyway”

• Each of these iterations is done top-down

• “Driven by risk management”, i.e. you concentrate on
prototyping the bits you don’t understand yet

• Important to resist pressure from customers who may not
understand engineering limitations of the prototypes and want
to see one ‘just tidied up’ and delivered

Evolutionary Model

• Products like Windows and Office are now so complex that they
‘evolve’ (MS tried twice to rewrite Word from scratch and failed)

• The big change that has made this possible has been the arrival
of automatic regression testing

• Firms now have huge suites of test cases against which daily
builds of the software are tested

• The development cycle is to add changes, check them in, and
test them (“check in early, check in often”)

• The guest lecture will discuss this

• NB: you may not use the same methodology everywhere … you
may be able to build device drivers “bottom up” to conform to a
static pre-determined design – but include them in an top-down
development of an evolving system

